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Abstract

We consider a linear threshold model of cascades in networks. An agent switches
(e.g. adopts an innovation) if the proportion of his neighbors who have already switched
exceeds his threshold. Agents’ thresholds are drawn randomly at the start of the
cascade process. We present a result for the expected number of switches in arbitrary
finite networks with any initial seeds. We define a new measure of an agent’s ability to
influence a cascade in a given network, called cascade centrality, which is the expected
size of the cascade when the agent is the only seed in the network. We then define
contagion centrality, which is the probability that all agents switch when the node is a
seed. For certain network topologies, we find analytic expressions for cascade centrality
and contagion centrality and show that there may be tension between them. Yet nodes
with high cascade and contagion centrality share an interesting property: they have
many neighbors, but their neighbors have few neighbors. As an illustration of cascade
centrality, we look at how the network structure affects optimal prices when a profit-
maximizing firm tries to spread an innovation. Optimal price and seeding behavior can
be counterintuitive when firms price irreversible cascades. Our tractable model can be
extended in various ways.
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1 Introduction

Many phenomena that occur in social and economic networks are, at least temporarily,

irreversible. Examples include the spread of incurable diseases (Klovdahl, 1985), infor-

mational leaks and rumors (Moreno et al., 2004), systemic risk of bank failures (Elliott

et al., 2014), platform adoption (David, 1985), drug addiction (Bauman and Ennett,

1996), patenting (Aghion et al., 2015), religious conversion (Stark and Bainbridge,

1980), and dropping out of high school (Staff and Kreager, 2008). These phenomena

have two key features. First, they exhibit network externalities: agents are (heteroge-

neously) affected by their neighbors in the network. The structure of the network is

critical for the irreversible phenomena that exhibit network effects. Some processes re-

main contained in isolated clusters and others spread to the whole network. Secondly,

these phenomena are inherently path-dependent: their irreversibility means that early

history matters for the overall outcome. Whether the goal is to reduce contagion risk or

to maximize adoption of an innovation, understanding how early history and network

structure affect cascades is important for good policies.

In order to analyze cascades in networks, we revisit the familiar linear threshold

model introduced by Granovetter (1978). We call an irreversible transition to new

state, such as adoption of a product, a switch (Jackson, 2008, p. 295). Initially, all

agents in the network are switched off. Then some agents are randomly (or optimally)

switched, i.e., seeded. Every agent in the network is endowed with an individual

threshold. In the following periods, once the proportion of neighbors that switches

exceeds his threshold, the agent also switches (Granovetter, 1978; Schelling, 1978).1

This process propagates through the network, but once an agent switches, he remains

switched forever.2 Our objective in this paper is to characterize how the structure of

the network and the initial seed set affect the total number of switches.

In contrast to some of the previous work (Acemoglu et al., 2011; Yildiz et al., 2011),

we do not look at a particular instance of a distribution of thresholds. Instead we as-

sume that agents’ thresholds are randomly and independently drawn from the uniform

distribution at the start of the cascade (Kempe et al., 2003). This is a reasonable as-

sumption if the social planner has no reason to believe that some thresholds are more

1There is empirical evidence that adoption products, such as iPhone, is sensitive to the proportion of
friends who have adopted it (Godinho de Matos et al., 2014). The linear threshold model may not be an
ideal model for a variety of processes, such as learning about new products, where the number rather than
the proportion of neighbors affects the probability of switching. For example, Banerjee et al. (2013) do not
find an effect of the proportion of neighbor-adopters on the adoption of microfinance.

2Kleinberg (2007) and Adam et al. (2012) call these types of threshold models “progressive”.
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likely than others (by the principle of insufficient reason). We show that under this

assumption the probability that an agent switches equals to the average probability

that his neighbors switch conditional on his not switching. This striking simplifica-

tion allows us to derive a simple analytical expression for the probability of any agent

switching, building on insights by Kempe et al. (2003). We introduce a new concept –

cascade centrality of a node – which measures the expected size of a cascade when this

node alone is a seed in a network. Our key theorem states that the cascade centrality

of an agent is equal to his degree (plus one) less the contribution of loops (paths that

bend back on themselves exactly once). Although calculating the number of paths or

loops is computationally challenging, it offers us a lot of analytical tractability. For

certain networks, such as trees, cycles, complete networks, and a large class of random

graphs, we can give analytical expressions for cascade centrality. In a tree, the cascade

centrality of any node is its degree (number of neighbors) plus one, whereas in a com-

plete network the cascade centrality of any node is proportional to the square root of

the number of nodes. We then introduce another concept called contagion centrality

of a node which measures the probability that the cascade reaches every other node

in network when this node is the only seed (Morris, 2000). We show that there is a

tension between cascade centrality and contagion centrality. For example, while the

cascade centrality of a node in a complete network increases at the rate of
√
n (where

n is the number of nodes), the probability of contagion declines slowly at the rate 1
n .

The theoretical literature on cascades and diffusion in networks is vast. Irreversibil-

ity of our cascade process sets out the present paper apart from the strand of the literar-

ture which assumes that agents can switch multiple times (Blume, 1993; Ellison, 1993;

Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et al., 2012). These

papers usually assume that agents play a coordination game with their neighbors and

analyze the dynamics using tools from evolutionary game theory.3 For certain prob-

lems, such as the possibility of contagion, the models are essentially equivalent (Morris,

2000; Watts, 2002; Dodds and Watts, 2004; Lelarge, 2012; Adam et al., 2012). Our

approach allows us to analyze precisely how the structure of the network affects the

cascade process. Since the number of paths determines expected switches, we show

that, at least theoretically, we cannot expect any straightforward comparative statics

3In evolutionary models, multiple switches can occur either because agents make an error or because their
thresholds are redrawn during the cascade. The process is ergodic so the stationary distribution does not
depend on the initial conditions. Our model can be seen as a coordination game with heterogeneous payoffs,
but in which seeds have a dominant strategy to switch. Another interesting class of non-ergodic models is
one in which the seeds can also switch back and forth, but where the thresholds are fixed and the agents
always best-respond. Adam et al. (2012) show that in this class of models, the process either converges to
an equilibrium or the system oscillates between exactly two states.
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using most macroscopic network properties, such as clustering (Centola et al., 2007;

Centola, 2010; Acemoglu et al., 2011).4

We illustrate cascade centrality with an economic application. We consider how

a profit-maximizing firm tries to diffuse a product in a network. It needs to pick a

seed and a price. Higher prices make agents less likely to adopt the product for any

proportion of neighbors who have already adopted it. While this problem becomes

analytically challenging, we are able to use our tools to derive some interesting propo-

sitions. We show that the structure of the network dramatically affects the optimal

price. For example, in a line network the optimal price is bounded away from zero

as the line becomes long, whereas when a complete graph becomes large the optimal

price goes to zero. While there have been several papers on optimal static pricing in

social networks (Candogan et al., 2012; Campbell, 2013; Ajorlou et al., 2015), to the

best of our knowledge, our work is the first one to analyze optimal pricing and seeding

of cascades simultaneously in general finite networks. Among papers that focus on

analytical results, Candogan et al. (2012) consider optimal pricing in a model with

a divisible good and Campbell (2013) considers pricing in random networks. In Lim

et al. (2014), we use cascade centrality to analyze competitive rumor spread.

Many strategic aspects of cascades in networks, such as attacks on networks (Ace-

moglu et al., 2013) and the role of imperfect information in collective action (Bikhchan-

dani et al., 1992; Banerjee, 1992), are beyond the scope of this paper.

We proceed as follows. Section 2 describes the “simple” linear threshold model

and the dynamics of the cascade. Section 3 explains the role of the uniform threshold

assumption, describes the analytical expression for the expected number of switches,

introduces cascade centrality and states the main theorem linking cascade centrality

to the number of loops. This section also introduces contagion centrality. Section 4

applies the main theorem and describes analytical results for cascade centrality and

contagion centrality for certain topologies. In Section 5, we describe the application to

optimal pricing. Section 6 briefly mentions a few extensions of the model, while Section

7 concludes and points to directions for further work. All the proofs and simulations

are in the Appendix.

4In Appendix C, we show that higher clustering can both increase and decrease the number of expected
switches. This is also true when we consider “average cascades” i.e. when the seed is random.
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2 General model of cascades

2.1 Preliminaries

Let G(V,E) be a simple (unweighted and undirected), connected graph with a set of

n agents V := {1, . . . , n} and a set of m links E.5 We denote the neighbors of i ∈ V as

Ni(G) := {j|(j, i) ∈ E} and the degree of i as di := |Ni(G)|. A threshold for agent i is a

random variable Θi drawn independently from a probability distribution with support

[0, 1]. The associated multivariate probability density function for all the nodes in the

graph is f(θ). Each agent is i ∈ V assigned a threshold θi. Let’s define the threshold

profile of agents as θ := (θi)i∈V . A network Gθ is a graph endowed with a threshold

profile.

2.2 Dynamics of a deterministic cascade

First, let us consider dynamics of a deterministic cascade on a given network Gθ. We

follow the exposition of Acemoglu et al. (2011).6 The binary state of agent i at time

t is denoted xi(t) = {0, 1}, corresponding to “off” and “switched”. Denote by St(Gθ)

the set of additional switches in network Gθ at time t. At time t = 0, a subset of

agents S0 ⊆ V is selected to be the seed set. We assume that at t = 0 agents switch if

and only if they are in the seed set. Hence, at t = 1, any i ∈ V \ S0(Gθ) will switch,

i.e., i ∈ S1(Gθ) if
|S0(Gθ) ∩Ni(Gθ)|

|Ni(Gθ)|
≥ θi.

This means that at t = 1 agents switch only if the proportion of their neighbors

who were seeds exceeds their threshold. Then, for a given period t ≥ 0 and node

i ∈ V \ ∪t−1
τ=0Sτ will switch at t, i.e., i ∈ St(Gθ) if

|{∪t−1
τ=0Sτ (Gθ)} ∩Ni(Gθ)|

|Ni(Gθ)|
≥ θi.

This means that any agent who has not switched by some period t, switches in time

period t + 1 if the proportion of his neighbors who switched is greater or equal to

5An extension of the model to a directed graph is fairly straightforward and does not substantially affect
the analysis.

6The dynamics of our model can be described as modified local interaction game (Morris, 2000, Equation
2.1) in which critical probability q (payoff from being switched off) is drawn from Θ for each agent, except
the seeds for which q = θ = 0 i.e. being switched is a best response. In a Nash equilibrium, each agent best
responds in his own-payoff local interaction game.
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his threshold θi. For a given network Gθ, define the fixed point of the process as

S0 = S(Gθ, S0)⇒ St(Gθ) = ∅ for all t > 0. As Acemoglu et al. (2011) show, this fixed

point always exists.

2.3 Expected size of a cascade

Let us now consider the “average” cascade dynamics on a network when thresholds

are drawn from f(θ). For a given graph G and S0, we can map each realization f(θ)

to a set of switches S(Gθ, S0). Hence, we can treat S(Gθ, S0) as a random variable

with a probability distribution f(θ). Let us compute the expected probability of any

particular agent i switching in network G is given seed S0 by taking the expectation

with respect to f(θ)

Pi(G,S0) =

ˆ
Rn

|S(Gθ, S0) ∩ {i}|f(θ)dθ.

Hence, the expected number of switches in graph G is:

E[S(G,S0)] :=

ˆ
Rn

|S(Gθ, S0)|f(θ)dθ =
n∑
i=1

Pi(G,S0).

While our deterministic process mimics the one in Acemoglu et al. (2011), our focus

on the expected size of a cascade by integrating over possible thresholds is similar to

Kempe et al. (2003). In Section 6, we also show that our analysis can be extended to

the case where agents do not switch immediately and have multiple switching attempts.

3 Analysis of a simple model

3.1 Uniform distribution

We first consider how the probability of an agent switching depends on the probability

of his neighbors switching. We show that if the threshold for this agent is drawn from

uniform distribution then his probability of switching is simply equal to the average

switching probability of his neighbors conditional on his not switching.

Proposition 1. Let {G(n)}n∈N+ be a set of networks in which di(G(n)) = n− 1 and

a non-empty seed set is S0 ⊆ V \ {i} on each G(n), then

Pi(G(n), S0) =
∑

j∈Ni(G(n))

Pj(G(n), S0|i /∈ S)

di(G(n))
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Figure 1: Uniform Threshold Rule for a Star

for any seed set on every G(n) if and only if Θi is uniformly distributed on [0, 1] almost

everywhere.

It is easy to illustrate the proposition with a example of star network, which also

places a key role in the proof. Figure 1 shows that five of center’s neighbors have a

probability of switching equals to 1 because they are seed. The other three have a

probability of switching equal to zero, conditional on the center not switching. Hence,

the probability of the center node switching is 5
8 whenever his threshold is drawn from

the uniform distribution. In the rest of the paper we use the following assumption.

Assumption 1. For any Gθ and every i ∈ V , Θi ∼ U(0, 1) and independent.

We therefore drop θ subscript and henceforth G ≡ Gθ. From now on, we use

graph/network, agent/node, and link/edge interchangeably.

It may be tempting to conclude that the uniform distribution of thresholds implies

that any agent’s probability of switching is equal to the probability of switching of all

agent’s neighbors. However, this is not the case precisely due to the path dependence

of the switching process. Consider a line network of length three with one seed at a leaf

node. It is easy to show that if thresholds are drawn from a uniform distribution, the

probability of the center and other leaf node switching is 1
2 . However, the switching

probability of the middle node is not the average of the probabilities of his neighbors

(which is 3
4).
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i

j

Figure 2: A path between two nodes

3.2 Cascade centrality

In order to capture path dependence of the cascade process, we first introduce paths.7

Definition 1. A sequence of nodes P = (i0, · · · , ik) on a graph G is a path if ij ∈
Nij−1(G) for all 1 ≤ j ≤ k and each ij ∈ P is distinct.

Since every node in the path is distinct, so is every edge. In general, there may

be multiple paths between any two nodes. Figure 2 shows one possible path between

nodes i and j. There are three paths between i and j in total in this network.

Definition 2. For a path P in G, the degree sequence along P is denoted (di(G))i∈P .

The degree sequence product along P is

χP :=
∏
i∈P

di(G)

di0
.

The degree sequence product of a particular path multiplies the degree every node

in the path except the first one. The degree sequence product of the path in Figure 2

is 2× 3× 3× 1 = 12.

7Some graph theory textbooks refer to “paths” as “simple paths”. Since we only use “simple paths” in
this paper, we refer to them as “paths” without any ambiguity.
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For any G and S0, let Pji be the set of all paths beginning at j ∈ S0 and ending at

i ∈ V \S0 and P∗ji ⊆ Pji denote the subset of those paths that exclude any other node

in S0. The following result follows from the equivalence of the linear threshold process

and random selection of “live-edge paths” established by (Kempe et al., 2003, Claim

2.6).

Proposition 2. Given a graph G and seed S0, the probability that node i ∈ V \ S0

switches is

Pi(G,S0) =
∑
j∈S0

∑
P∈P∗ji

1

χP
.

Proposition 2 provides a remarkable insight into the calculation of the size of the

expected cascade in any network with any seed. It says that the expected probability

of any node switching is equal to the sum of the degree sequence products along all

the paths from each seed (avoiding any other seed) to the node. In Section 4, we show

this result can be applied to analyze a variety of networks.

Figure 3 illustrates how to apply the proposition to a fairly general network with two

seeds A and B. Each path is labelled in a different color (some paths may include paths

in themselves). The numbers next to the nodes denote the probabilistic contributions

– inverse of the degree sequence products – of various paths. Note that seed B does not

affect the probability of switching of the nodes in the top triangle and of the leftmost

node because any path from B to these nodes must pass through A.8

Using Proposition 2, we can define the expected size of the cascade when a particular

node is the seed.

Definition 3. Cascade centrality of node i in graph G is the expected number of

switches in that graph given i is the seed, namely

Ci(G) := E[S(G, {i})] = 1 +
∑

j∈V \{i}

Pj(G, {i}) = 1 +
∑

j∈V \{i}

∑
P∈Pij

1

χP

and the average cascade in a graph G is

C(G) :=

∑
i∈V Ci(G)

n
.

Cascade centrality captures the importance of a node in the network by measuring

how large a cascade it induces when it alone is the seed. In order to see how cascade

centrality can be used to generate insights into cascade processes, we prove a useful

8In the language of Bayesian networks, we could say that A is a Markov blanket for these nodes.
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Figure 3: Network with two seeds and all the relevant paths

decomposition result. We first introduce a loop, which is a sequence of nodes (i.e. a

walk) that bends back on itself exactly once.

Definition 4. A sequence of nodes L = (i0, . . . , ik) on a graphG is a loop if (i0, . . . , ik−1)

is a path and ik ∈ {i0, . . . , ik−2} for some k ≥ 2.

The degree sequence product χL for a loop L = (i0, . . . , ik) is equal to the degree

sequence product of its corresponding path (i0, . . . , ik−1) (see Definition 2). Let Lij be

the set of all loops beginning at node i and ending at node j. Figure 4 illustrates a

loop beginning at node i.

Theorem 1. The cascade centrality of any node i in G is:

Ci(G) = 1 + di −
∑
j∈V

∑
L∈Lij

1

χL

Theorem 1 shows that cascade centrality of any node in any network is at most

its degree plus one. Fixing a node’s degree, the presence of loops strictly reduces its

cascade centrality. Long loops and loops that involve nodes with high degrees will

reduce cascade centrality by less.
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Figure 4: Loop

The theorem immediately suggests how to design a network that maximizes the

maximum cascade centrality over all nodes in the graph. Let G be the set of all graphs

with vertex set V (|V | = n) and Gm be the set of all graphs with vertex set V and

exactly m edges (|E| = m). A star graph of order n is an acyclic graph (tree) on n

nodes with one node having degree n− 1 and the other n− 1 nodes having degree 1.

Proposition 3. Let

G∗ ∼= arg max
G∈G
{max
i∈V
Ci(G)}

Then, G∗ is uniquely a star graph of order n.

Let

G∗m
∼= arg max

G∈Gm
{max
i∈V
Ci(G)}

Then

max
i∈V
Ci(G∗m) > max

i∈V
Ci(G∗m−1) whenever 1 ≤ m ≤ n− 1

and

max
i∈V
Ci(G∗m) > max

i∈V
Ci(G∗m+1) whenever n ≤ m ≤

(
n

2

)

11



Proposition 3 says that adding edges to and removing edges from a star graph

can only reduce the cascade centrality of the node with the highest cascade centrality.

Moreover, it seems clear that the ideal node for seeding has high degree, but all of its

neighbors (and the neighbors of their neighbors) have a low degree. In contrast to the

literature on “key players”, nodes with high cascade centrality do not have influential

friends - instead they have many unpopular friends.

Theorem 1 and our simulations (in the Appendix) also show that cascade centrality

is closely related to degree centrality. However, the simulations also indicate cascade

centrality can be very different from centrality notions based on counting the number

of walks (i.e. sequences of connected nodes which are not necessarily distinct), such

as eigenvector centrality and Katz-Bonacich centrality (Katz, 1953; Bonacich, 1987).

Indeed, our simulations make it clear that since the contribution of paths of greater

length decreases geometrically in cascade centrality, even knowing the set of paths of

lengths one, two, and three can provide an excellent approximation to the expected

size of the cascade.

3.3 Contagion centrality

In the previous section, we focused on the expected size of the cascade given a seed.

We now turn our attention to extreme outcomes: i.e. the probability that the cascade

reaches every node in the network (or a given connected subnetwork). This would

allow us to compare how susceptible to total contagion different networks can be.

Definition 5. Contagion centrality of a node i is

Ki(G) =

ˆ
Rn

1n (|S(Gθ, {i})|) f(θ)dθ

(where 1n is the indicator function taking value 1 when the argument is equal to n

and zero otherwise) i.e. the probability that the entire network switches when i is the

only seed.

Contagiousness of a graph G is

K(G) =

∑
i∈V Ki(G)

n

i.e. the probability that every agent in G switches when one agent is seeded uniformly

at random.
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Our key result in this section states that contagion centrality of a node depends

on the product of the eigenvalues of the Laplacian matrix (the difference between the

diagonal degree matrix and the adjacency matrix) and the degree of all other nodes

rather than, like cascade centrality, directly on the degree of the node itself. The reason

for the relationship between the Laplacian and contagion is that contagion (in any finite

network) can be represented by a spanning tree and the product of the eigenvalues of

the Laplacian counts the number of spanning trees in the network.

Theorem 2. Contagion centrality of a node i in G is

Ki(G) =
1
nλ1 × . . .× λn−1∏

j∈V \{i} dj

and contagiousness of a network is

K(G) =

[
1
nλ1 × . . .× λn−1

]
×
[∑

j∈V dj

]
n×

∏
j∈V dj

where λ1, . . . , λn−1 are non-zero eigenvalues of the Laplacian matrix of G.

Unlike cascade centrality, computing contagion centrality for any node in any net-

work only involves finding the eigenvalues of the Laplacian (and is therefore computa-

tionally tractable). Since contagion centrality only depends on the count of spanning

trees and the degree sequence of the graph, comparative statics results can be derived

straightforwardly from corresponding comparative statics on the number of spanning

trees in the graph.9

4 Analytical results

4.1 Cascade centrality

We now show how Proposition 2 and Theorem 1 can be used to derive analytical

expressions for the expected number of switches in certain fixed and infinite networks.

Corollary 1. 1. Suppose that G is a tree. Then for any i ∈ V ,

Ci(G) = di(G) + 1

9See, for example, Das et al. (2013) for an analytical upper bound on the number of spanning trees in
the graph as a function of various network parameters, such as the number of vertices, the number of edges,
maximum degree, second maximum degree, and so on.
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C(G) = 1 +
2(n− 1)

n

2. Suppose that G is a cycle of order n. Then, for any i ∈ V ,

Ci(G) = 3− 1

2n−2

Consider {G(n)}n∈N+, a sequence of cycles of order n. Then

lim
n→∞

Ci(G(n)) = 3

3. Suppose that G is a complete graph of order n. Then, for all i ∈ V ,

Ci(G) = C(G) = 1 + (n− 1)

(
n−1∑
i=1

P(n− 2, i− 1)

(
1

n− 1

)i)

where P(n, i) ≡ n!
(n−i)! is number of ways of obtaining an ordered subset of i

elements from a set of n elements.

Consider {G(n)}n∈N+, a sequence of complete graphs of order n. Then

lim
n→∞

Ci(G(n))√
n

=

√
π

2

Our first result, an immediate corollary of Theorem 1, says that the expected num-

ber of switches from a single seed node in any tree equals to the degree of the seed plus

one. The tree is a particularly convenient topology to analyze because there is a unique

path between any two nodes i.e. there are no loops. Hence, the probability of switching

of any node simply equals to the degree sequence product along this path. From this

we obtain that the size of cascade starting from a random node in a (connected) tree

is independent of its structure. Figure 5 illustrates the probabilities of switching for all

the nodes in a tree with one seed.

Due to their symmetry, the cycle and the complete graph are also easy to analyze.

In these networks, the identity of the seed node is irrelevant. As Figure 6 shows,

in a cycle with one seed, there are only two paths to each node around the cycle.

Alternatively, using Theorem 1, we can simply subtract the contribution of the unique

loop from three since di + 1 = 3 for any node in a cycle. As the cycle becomes large,

its behavior approaches that of a non-edge seed node (i.e. with degree 2) on a path.

In a complete graph, any node can be reached from any other node is one step. But,

as Figure 7 shows, we must also keep track of the number of paths of every possible

14
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Figure 6: Cycle with one seed
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Figure 7: Complete graph with one seed

length. Fortunately, the number of paths of a length k can the expressed as number of

ways to select k out of n−1 objects without repetition (for example, lottery numbers).

The result also shows that the size of the expected cascade in a complete graph grows

at the rate
√
n.

We now prove a general result for cascade centrality for large random graphs. In

order to do this, we first introduce the configuration model, closely following Bollobás

and Riordan (2015). The configuration model allows us to create random graphs with

a given degree distribution. First, we generate a desired degree sequence. Then we

pick randomly two elements of the degree sequence – nodes with “stubs” – and link

them together. We then delete those two elements from the degree sequence. This may

produce self-loops and multi-edges, but it can be shown that the degree distribution in

the configuration model converges in probability to the desired degree distribution. To

avoid excess notation, we delegate the technical description of what we call a “regular”

configuration model G∗dn
to the Appendix and simply state the key result.

Proposition 4. Let G∗dn
be a regular configuration model and consider the cascade

centrality of a node in G = G∗dn
chosen uniformly at random, then

Pr(C(G) = 1 + E(D))→ 1

as n→∞ where E(D) is the expected degree of G∗dn
.

The configuration model is useful because it can be used to generate any random
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graph model, including Erdős-Rényi graphs and power-law graphs. Our result only

relies on the fact that the expected degree of the random graph is finite as the network

gets large. The startling result (using Corollary 5 in Bollobás and Riordan (2015)) is

that any random graph generated from the configuration model behaves like a tree.

Finally, we turn to the analysis of infinite lattices, first considered in a cascade

framework by Morris (2000). We now turn our attention to infinite network. Note that

under the uniform random threshold assumption, cascade centrality is well-defined for

any infinite lattice with a fixed degree. While we cannot obtain analytical expression

for cascade centrality in these lattices, we can give reasonable bounds. We will consider

hypercubic lattices of dimension r: in these networks, nodes are the integer points of Rr

and edges are the unit line segments between the integer points. Hypercubic lattices

include the square lattice (r = 2) and hexagonal lattice (r = 3) discussed in Morris

(2000).

Proposition 5. Let G be an infinite hypercubic lattice of dimension r ≥ 2, then for a

generic node i:

3 ≤ Ci(G) ≤ 1 + 2r

The upper bound in this proposition comes from Theorem 1. The classical square

lattice gives us us 3≤ C ≤5 (computationally, we get 3.5 up to paths of length 10),

whereas for the hexagonal lattice we obtain tighter bounds of 3 ≤ C ≤ 7 (computation-

ally, we get 5.0 up to paths of length 10).10

4.2 Contagion centrality

We now turn to the analysis of contagion centrality. As we pointed out, contagion

centrality is a straightforward computational problem on finite networks. The following

result illustrates the networks already covered by Corollary 1.

10A path on an infinite lattice is called a “self-avoiding walk” (Madras and Slade, 1993). “The enumeration
of self-avoiding walks ... has for half a century, been among the most challenging problems in enumerative
combinatorics.” (Guttmann and Conway, 2001). The complexity of the problem of calculating the number of
self-avoiding walks on an infinite lattice is not known (but conjectured to be NP-hard). Very few analytical
results are known, Duminil-Copin and Smirnov (2012) is a notable exception. Using Theorem 2 and the
results on the number self-avoiding walks up to length 10 from Fisher and Sykes (1959) we calculate that the
cascade centrality of a node in a: honeycomb lattice is 2.913; square lattice is 3.498; Kagome (trihexagonal)
lattice is 3.242; triangular lattice is 4.039. Here lattices with higher degree have higher cascade centrality,
but lattices with higher clustering (and the same degree i.e. square and Kagome) have lower centrality.
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Corollary 2. 1. Let G be a tree. For any i ∈ V

Ki(G) =
1∏

j∈V \i dj

and

K(G) =
2(n− 1)

n×
∏
j∈V dj

2. Let G be a cycle. For any i ∈ V

Ki(G) = K(G) =
n

2n−1

3. Let G be a complete graph. For any i ∈ V

lim
n→∞

Ki(G)
1
n

= lim
n→∞

K(G)
1
n

= e

Nodes with high cascade and contagion centrality have a lot of neighbors, who have

fewer neighbors. However, our results highlight the tradeoff between cascade centrality

and contagion centrality in networks. This should not be surprising. Cascade centrality

depends directly on the degree of the node (Theorem 1) whereas contagion centrality

does not. Let’s compare trees and complete graphs. In trees, the maximum cascade

centrality of a node is n. Cascade centrality of any node in a large complete graph, on

the other hand, is roughly
√
n. However, contagion centrality declines exponentially

fast in trees, it declines at rate 1
n is complete graphs. Therefore, while possible cas-

cades are “smaller” in complete graphs, the probability of an extreme outcome i.e. a

contagion is relatively greater. In this sense, our framework supports observations that

complete graphs are, in some sense, “robust but fragile” (Acemoglu et al., 2015).

Finally, we can use contagion centrality to express the probability of switching for

any subset of nodes that are reachable from the seed.

Proposition 6. Consider a cascade process on G(V,E). The probability that a con-

nected set of nodes V ′ ⊂ V switches when i ∈ V ′ is the seed is

∏
j∈V \V ′

[
1− |Nj(G) ∩ V ′|

dj

][ 1
nλ1 × . . .× λn−1∏

j∈V ′\{i} dj

]

where λ1, . . . , λn−1 are non-zero eigenvalues of the Laplacian matrix of G′, subgraph

induced by V ′ and the degrees of the nodes are calculated from G.

The first term expresses the probability that “none of the nodes that border with
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V ′ switch”. So, for example, no neighboring leaves can remain not switched. If none

of the nodes that border with V ′ switch, this creates a “blanket” between V ′ and the

V \
[
V ′ ∪j∈V ′ Nj(G)

]
and ensures that none of these remaining nodes switch. The last

term is simply the probability that all of V ′ switch that we derive using Theorem 2.

5 Application: Pricing cascades

In this section, we apply our simple model of cascades to pricing. Suppose that the

seeder is in fact a profit-maximizing firm that is trying to spread its product. The firm

selects one agent i ∈ V as the seed and picks a uniform price 0 ≤ ρ ≤ 1 for its product.

The seed adopts the product immediately and the firm makes no profit off him. We

assume that subsequent agents adopt the product at period t+ 1 if:

[1− ρ]× [fraction of neighbors who adopted by t] ≥ θi.

When ρ = 0 we recover our simple linear threshold model and when ρ = 1 no

agent, except the seed, adopts the product. More generally, each agent’s demand for

the product is downward sloping: The higher the price ρ = 1, the less likely (compared

to the simple linear threshold model) is any agent to adopt the product for a given

threshold.

When the seed is i and the price is ρ, the firm’s profit is

π(i, ρ) = ρ×

 ∑
j∈V \{i}

∑
P∈Pij

(1− ρ)|P |

χP


where the term in brackets is the “stochastic” cascade centrality, which we will return

to later, and |P | is the length of path P . The profit-maximization problem for the

firm is now a lot harder: it needs to pick the optimal node i∗ and the optimal price ρ∗

simultaneously i.e. it is no longer sufficient to simply pick the node with the highest

cascade centrality in order to maximize the size of the cascade. In general, the node

with the highest cascade centrality is not the node that will maximize profit. Moreover,

analytically solving the pricing problem for a general finite network is not possible.

Nevertheless, our setting can provide a number of illuminating observations.

Proposition 7. In any network and for any seed, the optimal price satisfies ρ∗ ≤ 1
2 .

First, we easily show that the highest possible profit for a network of size n can be

obtained in a star where is optimal price and seed are always the same.
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Proposition 8. Maximum profit in any network with n nodes is 1
4 (n− 1) and it is

obtained in a star of order n. The optimal price is 1
2 irrespective of the order of the

star.

Next, we consider a line network. Recall that every node in a line, except the leaves

has a cascade centrality of 3. Our next result shows that the strictly optimal seed is,

in fact, a penultimate node. Moreover, we can rank all the nodes according to their

profitability.

Proposition 9. Consider a line network G with ordered nodes {1, 2, 3, ..., n}

1. The optimal seeds on any line are nodes i∗ ∈ {2, n − 1}. As n → ∞, ρ∗ →≈
.465571 and π(i∗, ρ∗)→≈ .418588.

2. π(i, ρ∗) > π(j, ρ∗) > π(1, ρ∗) = π(n, ρ∗) for any 2 ≤ i < j ≤ bn/2c

3. As n→∞ and i ∈ {1, n}, ρ∗ →
√

2− 1 and π(1, ρ∗)→ (
√

2− 1)2.

4. For any seed, maximum profit is increasing in n.

The reason for this result follows the same intuition as for nodes that have high

cascade centrality. The firm profits the most from seeding the node that has a lot of

neighbors, but also one whose neighbors have few neighbors. In the case of the line, this

distinction is stark and analytically tractable. In cycles, the optimal seeding problem

becomes symmetical and is similar to seeding a leaf on a line.

Proposition 10. Consider {G(n)}n∈N+, a sequence of complete cycles of order n.

Then for a generic seed i

ρ∗ →
√

2− 1

and

π(i, ρ∗)→ 1

as n→∞.

We can apply this to a cycle of 3 to get ρ∗ = 4
3 −

√
7

3 ≈ 0.451 and π(i, ρ∗) =
1
27

(
7
√

7− 10
)
≈ 0.3156. While the optimal price in a cycle and in a complete graph

of thee is the same, optimal pricing in complete graphs looks radically different as the

grow.

Proposition 11. Consider {G(n)}n∈N+, a sequence of complete graphs of order n.

Then for a generic seed i

ρ∗ → 0
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and

π(i, ρ∗)→ 1

as n→∞.

The complete graph result can, in fact, be generalized to an r-regular tree.

Proposition 12. Consider an r-regular infinite tree. Then for a generic seed i

ρ∗ =
1

1 +
√
r

and

π(i, ρ∗) =
r

(
√
r + 1)2

It should be obvious that the last two results are completely congruent. As the

regularity of the infinite tree increases, its optimal price tends to zero and its profit

tends to 1, just like in a complete graph. The general, testable predictions of this model

is that optimal price should fall in denser and larger networks, but the profit should

rise. However, our results also highlight the subtle effects of the network structure on

pricing cascading innovations.

6 Extensions

Although the model we presented in this paper is rather stylized, it provides a lot of

insight into the effect of network structure on cascades. We now turn to several ways

to enrich and parameterize both the simple and the competition model for empirical

applications (see, for example, Hodas and Lerman (2014)).

6.1 Homophily

In our simple model all agents were identical. However, in many social networks there is

substantial agent heterogeneity beyond the network structure. For example, neighbors

can have heterogeneous impact on the probability of switching. This can be captured

easily by directed, weighted networks Kempe et al. (2003). On the other hand, agents

with similar thresholds might be more likely to be neighbors – this phenomenon is

known as homophily McPherson et al. (2001). Our model can be extended to capture

homophily in the following way: assign a parameter ζi ∈ (0, 1) to each agent in such

a way that “similar” agents have similar ζ. The homophily parameter linearly scales
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down the probability of switching given any number of neighbors who have switched.

In order to adjust the cascade centrality measure, it is simply required to replace di

with ζidi in every degree sequence product that involves agent i. All the results can

go through with that amendment.

6.2 Susceptibility and network formation

Suppose that we are interested in the probabiliy that a node switches but we do not

know where the cascade process begins. An application of this could be a which agent

expect a cascade following a period of network formation (e.g. Blume et al. (2011);

Erol and Vohra (2014); Farboodi (2014)). To keep things simple, suppose that one

node is seeded randomly. Then we can define the susceptibility of i in G as

φi(G) =

∑
j∈V Pi(G, {j})

n

remembering that Pi(G, {i}) = 1. It turns out that the susceptibility of any node

is related to the cascade centrality of all other nodes. Let us define for convenience

χPii = 1.

Proposition 13. Susceptibility of node i is

φi(G) =
1

din

∑
j∈N

∑
Pij∈Pij

dj
χPij


Moreover, in any regular graph G

φi(G) =
Ci(G)

n

While the relationship between susceptibility and centrality can be quite compli-

cated (even in trees where susceptibility of a node depends on the structure of the

whole tree), in regular graphs, such as cycles or complete graphs, they are perfectly

related: graphs (of the same size) in which nodes have higher cascade centrality are

more susceptible.11

Let us briefly consider how susceptibility changes the outcomes of simple network

formation games. Consider an extension of the setting of Jackson and Wolinsky (1996)

(similar to Blume et al. (2011)) in which agents form a pairwise stable network in the

first period and in the second period a cascade starting from a random seed hits the

11In general regular graphs, nodes will have different cascade centrality.
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network. The agents receive a benefit from the network only if they do not switch

(“fail”) after the cascade, however, the network formation costs are sunk.

We can write the expected utility ui(G) of an agent in G

ui(G) = (1− φi(G))
∑
j 6=i

δtij − cdi

where tij is the geodesic distance between i and j so the cost and benefits of links are

exactly as in Jackson and Wolinsky (1996). Recall that when φi(G) = 0 for all i there

are conditions on c and δ under which star networks are stable (Jackson and Wolinsky,

1996). However, when agents anticipate cascades, we get a contrasting result:

Proposition 14. A star is never stable in the network formation game with cascades.

The simple proof shows that any two leaves in a star can add a link between them

without increasing their probability of failure. To prevent them from doing that we

require that δ < c. However, the centre can also add and remove links without affecting

his probability of failure, but in order to encourage him to keep his links we require

that δ ≥ c.
This model can be developed further to find conditions under which complete net-

works are stable and under what conditions stable networks are inefficient (in general

they will be). Since there are many options for specifying the utility function and the

structure of the cascades, we leave this for future work.

7 Conclusions

This paper provided a simple framework for analyzing cascades in networks. We showed

that when agents’ thresholds are drawn from a uniform distribution the cascade process

can be expressed as a count of paths attenuated by their degree sequence products.

We offered two new tools for the analysis of cascades in networks: cascade centrality

(that measures the expected) and contagion centrality. We show that there is a tradeoff

between the two measures. We then applied our models to a setting of cascades pricing.

Our simple model can also be used to explore other questions, such as network

formation in the presence of cascade and optimal network design. The model can also

be taken to data. We offered some guidance on possible parameterization in Section

6. Parameters δ, c and ζ can, in principle, be estimated. There are several obvious

directions for future work. First, one could look at dynamic, rather than static, pricing

(Ajorlou et al., 2015). Second, it would be informative to understand how network
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formation would play out in rich economic settings under cascade and contagion threats

described by our model (Babus, 2013; Erol and Vohra, 2014; Farboodi, 2014).

24



Appendix A: Proofs

Proofs of Propositions in Section 3

Proof of Proposition 1. First, we prove the following lemma, illustrated in the main
text.

Lemma 1. Let {G(n)}n∈N+ be a sequence of star networks of order n ∈ N+
in which

i is the center and the seed set is S0 ⊆ V \ {i}, then

Pi(G(n), S0) =
|S0|

di(G(n))

for any seed 0 ≤ |S0| ≤ n− 1 on every G(n) if and only if Θi is uniformly distributed
on [0, 1] almost everywhere.

Proof of Lemma 1. The “if” direction is trivial since for any star G(n) and 0 ≤ |S0| ≤
n− 1, under the property of the uniform distribution

FU

(
|S0|
n− 1

)
=
|S0|
n− 1

and the probability of the center switching is therefore

Pi(G(n), S0) = FΘi

(
|S0|

di(G(n))

)
= FΘi

(
|S0|
n− 1

)
= FU

(
|S0|
n− 1

)
=
|S0|
n− 1

For the “only if” part, fix some |S0| ∈ N+ and G(n), then as before

Pi(G(n), S0) = FΘi

(
|S0|

di(G(n))

)
= FΘi

(
|S0|
n− 1

)
Indeed, for each 1 ≤ |S0| ≤ n− 1 on every G(n), we require that

FΘi

(
|S0|
n− 1

)
=
|S0|
n− 1

Hence, for each 1 ≤ |S0| ≤ n− 1 on every G(n), we require that:

FΘi

(
|S0|
n− 1

)
− FΘi

(
|S0| − 1

n− 1

)
=

1

n− 1

Therefore we require that Pr(a ≤ x ≤ b) = b − a for any rational a, b ∈ [0, 1] s.t.
a < b. Hence, we require that Θi is uniform over every open interval (a, b) for any
rational a, b ∈ [0, 1] s.t. a < b (there are countably infinitely many such intervals).
Therefore, Θi is not uniform over a set of measure 0 so the distribution is uniform
almost everywhere on [0, 1].
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It remains to show that in order to calculate the switching probability of i, we
need to average the switching probability of Ni(G) conditional on i not switching. We
build on Claim 2.6 in Kempe et al. (2003). Without loss of generality, we can restrict
ourselves to cases in which i in node that switches in the last round of the cascade
process (what happens after i switches is irrelevant to i’s probability of switching).
Any live-edge path from the seeds that activates i must pass through at least one of
the neighbors without passing through i first. Therefore, the probability of i switching
must only depend on the probability of his neighbors switching, conditional on i not
switching before. The probability that the live-edge path takes a step from a neigbor
j ∈ Ni(G) to i is 1

di
irrespective of the path by from Lemma 1. The proposition follows

immediately.

Proof of Proposition 2. Again, we build on Kempe et al. (2003). By Claim 2.6, the
distribution of switches in an LTM process is the same as the distribution of switches
under the independent cascade process with live-edges. In an independent cascade
process, by Claim 2.3, a node switches if and only if there is a live-edge path from
some node in S0. By construction of live-edge paths (i) this path avoids other nodes in
S0 (because nodes in S0 are already activated) and (ii) the path is from exactly one node
in S0 (otherwise two path will activate one node). A node is activated by its neighbor
along the live-edge path P ∈ P∗ with probability 1

di
. Therefore, the probability that

the nodes switches along this live-edge path is 1
χP
. Hence, the probability that the

node is activated by a path from a particular j ∈ S0 is
∑

P∈P
1
χP

and by Claim 2.3 the

probability that the node is activated by any one j ∈ S0 is
∑

j∈S0

∑
P∈P

1
χP

.

Proof of Theorem 1. We first show that Ci(G) = di(G) + 1 when G is a tree. To save
on notation, we often refer to Ci(G) as Ci.

We can show this by an induction on the number of nodes in the graph. For n = 1,
Ci = 1 since it is an isolated node and there is no path in the graph. Now, fix N ≥ 1.
For any n ≤ N , we have Ci = 1 + di. Now, consider n = N + 1. Fix a node i ∈ V .
Then, we can decompose Ci as:

Ci = 1 +
∑
j∈Ni

1

dj
· (Cj(G)− 1).

However, Cj(G) can be re-expressed as Cj(G(j)) where G(j) is a branch of G starting
from j. Now, each G(j) is a tree that has strictly smaller than n nodes. Hence, the
induction hypothesis applies to each G(j), resulting in Cj(G) = Cj(G(j)) = dj + 1.
Therefore, we conclude that:

Ci = 1 +
∑
j∈Ni

1

dj
· (Cj(G)− 1) = 1 +

∑
j∈Ni

1

dj
· ((dj + 1)− 1) = 1 +

∑
j∈Ni

1 = di + 1.

Now that we have shown that when G is a tree Ci(G) = di(G) + 1 holds, let us use
it a base step for the next induction hypothesis. What we want to show is that the
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contribution from loops and paths add up to 1 + di:∑
j∈V \{i}

∑
P∈Pij

1

χP
+
∑
j∈V

∑
L∈Lij

1

χL
= 1 + di

Suppose that Theorem 1 holds for a graph with C > 0 or fewer cycles. We want to
show that Theorem 1 holds for a graph with C + 1 cycles.

The first two cases will allow us to generalize to deal with the most general Case
(iii):

• Case (i): The seed is on a unique one cycle (i.e. a closed loop). Create a graph
G′ by removing all edges between seed i and Ni(G) (as well as i) and attaching a
leaf seed to every Ni(G). The probability of switching for every node in G′ that
is also in G has not changed, but the size of the total contribution has increased
by di − 1 because of the extra seeds. Consider G′′di are di copies of G′ in which a
unique seed of G′ is a seed. The size of the contribution in G′ (and G) is equal to
the sum of the cascades in G′′di . By the induction hypothesis (since there are now
fewer than C cycles), each G′′di has a contribution of 2 (since each seed has degree
1). Since there are di copies of it, the contribution of G is 2di − (di − 1) = di + 1
as required. Note this argument also works even if there are cycles elsewhere in
the graph (i.e. they do not include i).

• Case (ii): The seed is not on a cycle (but there are cycles elsewhere i.e. loops
from i). Hence, the seed since on the intersection of one or more branches, each of
which may lead to a cycle (if they do not, the branch is a tree and it’s contribution
is immediately 2). In this case note, that the contribution can be broken down
into a the contribution of a unique path P (branch) to cycle and the contribution
of a cycle. Subtracting the contribution of the path P , “move” the seed from i
along the path to the cycle. The contribution of the cycle is 2 - the same as in
case (i) - by the induction hypothesis (discounting by 1

χP
).

• Case (iii): The seed is on multiple cycles and multiple branches. Apply case
(i) to all cycles, creating di − 1 extra leaf seeds and case (ii) to all branches
simultaneously. Using Case (i) or Case (ii), we have that the contribution of
each di such G′′di with a single leaf seed is 2 by the induction hypothesis (as we
have broken at least one cycle) because none of the probabilities of switching
of any node have changed using our construction. Hence, once again we have
2di − (di − 1) = di + 1 as required.

Proof of Proposition 3. The first statement is completely obvious and can be argued
by contradiction.

That the maximum cascade is increasing up to m = n − 1 in m is also obvious
(create the largest possible star at each stage).

To show the maximum cascade is decreasing from m = n− 1 in m, first note that
in order to maximize the cascade with m ≥ n− 1 edges it is necessary to have a node
with n − 1 edges. If there is no such node, then it must be possible to rewire some
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edges to this node. At each such rewiring, we will be increasing the cascade centrality
of this node by Theorem 1 because its degree will be increasing and the contribution
of loops will be falling. Therefore, for any m ≥ n − 1, the node that has the highest
cascade centrality has degree n− 1. Hence, any extra edge will necessarily create more
loops (even allowing for rewiring) and by Theorem 1 the maximum cascade centrality
will fall in m.

Proof of Theorem 2. Any realization of the deterministic cascade process κ ∈ K on Gθ

is charactersized by a unique sequence of additional switches κ(Gθ, S0) = {S0, S1, S2, . . .}.
Any κ(Gθ, S0) can be represented by a directed tree τ(G,S0) ∈ T (G,S0) rooted at s
on a subgraph of Gθ, for which there is an edge from i to j if and only if i ∈ St and
j ∈ St+1. There are many trees that may represent the same sequence, but a given
tree can represent at most one sequence.12 V ′ switching can be represented by any
such tree that includes V ′.

Now let’s consider the probability of this process when thresholds are uniform ran-
dom.

Our aim is to show that the probability of precisely nodes V ′ switching can be
decomposed into tree in which all incoming edges of i have weight 1

di
for all i.

For a given κ, we say node is exposed in period t where t = mint∈0,1,2,...{t|St ∈
κ, St ∩Ni(G) 6= ∅}. Given a node is exposed in t, there are two cases:

1. i ∈ St+1: St ∩Ni(G) = l (l ≥ 1). Using Assumption 1, probability that i ∈ St+1

is l
di

. τ(G,S0) representing κ can be extended with one of l possible edges. We

attach a weight of 1
di

any such extra edge.

2. i ∈ St+r: St ∩ Ni(G) = l (l ≥ 1) and St+r ∩ Ni(G) = l + a. If a node switches
when there are a additional neighbors who switch, then we know that most
l
di
< θ ≤ l+a

di
. Using Assumption 1, the probability of the threshold being in

that region is a
di

. τ(G, j) representing κ in t + r − 1 can be extended with one

(otherwise there is a cycle) of l possible edges. We attach a weight of 1
di

any such
extra edge.

Therefore each incoming edge into i in the tree has weight 1
di

and the root has no
incoming edges. Therefore, the weight of the tree is

1

χτ

Contagion is represented by a spanning tree rooted in i, the weight of which is 1∏
j∈V \{i} dj

.

(The corresponding probability of the cascade process represented by all these trees
is this probability times the number of trees that represent this cascade process). By
Kirchoff’s Theorem, the number of spanning trees of G (rooted in any node, since the

12Suppose not. A node switches if and only if its in the tree. A switched node can be member of only one
tree τ by construction. Then suppose that a tree represents two cascade processes: in one agent i switches
at time t and in the other i switches at time t′. But by construction the period in which i switches is equal
to the length of the unique path in that tree from sτ to i. Therefore, t = t′, a contradiction.
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number of spanning trees is same) is equal to the product of non-zero eigenvalues of
the Laplacian over n. The result follows immediately.

Proofs of Propositions in Section 4

Proof of Corollary 1. 1. See first part of proof of Proposition 2.
2. Fix a node i. Using Theorem 1, it suffices to subtract two loops from 1 + 2 = 3,

each contributing 1/2n−1. Therefore, Ci(G) = 3 − 2 · 1/2n−1 = 3 − 1/2n−2. The limit
result follows immediately.

3. Fix i and j 6= i. There are P(n − 2, k − 1) distinct paths of length k from i
to j, each of which has a degree sequence product of (n − 1)k; the number of ways of
permuting k−1 nodes upon selecting them out of n−2 possible candidates is precisely
P(n− 2, k − 1).

We can therefore re-write the cascade centrality of any node in a complete graph
G(n) as:

Ci(G(n)) = 1 +
n−1∑
i=0

i∏
j=0

(1− j/n− 1)

One can recognize this as the Ramanujan Q(n)-function. Following previous results,
Flajolet et al. (1995) show that Q(n) admits a full asymptotic expansion in descending
powers of

√
n, so:

Ci(G(n)) ∼ 1 +

[√
πn

2
− 1

3
+

1

12

√
π

2n
− 4

135n
+ . . .

]
This gives us the required result:

lim
n→∞

Ci(G(n))√
n

=

√
π

2
.

Note also that we actually obtain an even tighter results: as n→∞, we have that
Ci(G(n))→

√
πn
2 + 2

3 .

Proof of Proposition 4. We define a “regular” configuration model as follows:
Consider a degree sequence d = (d1, . . . , dn) of non-negative integers with an even

sum and length n. Gd is a random (simple) graph with degree sequence d and its asso-
ciated random configuration multigraph is G∗d created by uniformly randomly match-
ing on the degree half-edges (. It can be shown that the degree distribution in the
configuration model converges in probability to the degree distribution of Gd. Let
D = (r0, r1, . . .) ∈ D be a probability distribution on non-negative integers, such that
0 < E(D) <∞. We say that the probability of realisation k denote random variable δ
with probability distribution D is rk = Pr(δ = k). Finally, let nk(d) = |{j : dj = k}|
denote the number of times a particular degree i occurs in d and m(d) = 1

2

∑n
j=1 dj as

number of edges.
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We impose two regularity conditions on D. We say that dn → D if

lim
n→∞

nk(dn)

n
= rk

for each k and
m(dn)

n
→ E(D)

2
=

1

2

∞∑
k=0

krk

as n→∞.
We say that a configuration model is “regular” if we let D ∈ D and assume that

dn → D.
This is enough to give us a general result for cascade centrality on random graphs.
Given a graph G, for i ∈ V (G) and λ ≥ 0, let Γ≤λ(i) = ΓG≤λ(i) denote the subgraph

of G induced by the vertices within (graph) distance λ of i, regarded as a rooted graph
with root i.

Lemma 2 (Corollary 5 in Bollobás and Riordan (2015)). Suppose that dn → D and
let λ ≥ 1 be constant. Let i be a vertex of G = G∗dn

chosen uniformly at random. Then
with high probability13 the neighborhood Γ≤t(i) of i in G is a tree.

The results follows immediately from Corollary 1 and from Lemma 2 by observing
that Lemma 2 holds for any constant λ ≥ 1.

Proof of Proposition 5. Loose bounds on the number of paths cn (self-avoiding walks)
of length n in an infinite d − D hypercubic lattice, see equation 1.1.1 in Madras and
Slade (1993):

dn ≤ cn ≤ 2d(2d− 1)n−1

The degree of each node in this lattice is 2d giving us for a generic node i:

1 +
r

r − d
≤ Ci ≤ min

{
1 + 2d, 1 +

2d

2d− 1

(
2d

r − (2d− 1)

)}
1 +

2d

2d− d
≤ Ci≤ min

{
1 + 2d, 1 +

4d2

2d− 1

}
3 ≤ Ci ≤ 1 + 2d

since d > 1.

Proof of Corollary 2. 1. Tree: Ci(G) follows immediately from Proposition 2.

K(G) =

[
1

Πi∈V \s1di
+ . . .+ 1

Πi∈V \sndi

]
n

=
d1 + . . .+ dN
n×Πi∈V di

=

∑
i∈V di

n×Πi∈V di
=

2(n− 1)

n×Πi∈V di

13Given a sequence En of events, En holds with high probability if Pr(En)→ 1 as n→∞.
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2. For any cycle, there are n spanning trees rooted in any node. Since di = 2 for
all i ∈ V

Ki(G) = K(G) =
n× 2n

n× 2n
=

n

2n−2

3. Using the Cayley formula:

Ki(G) = K(G) =
nn−2

(n− 1)n−1
=

=
nn−1

n× (n− 1)n−1
=

1

n

(
n− 1 + 1

n− 1

)n−1

=
1

n

(
1 +

1

n− 1

)
n−1

and the limit as n→∞ of the term in brackets is e.

Proofs of Propositions in Section 5

Proof of Proposition 7. Note that ρ(1−ρ) is strictly decreasing function for ρ ∈ [1/2, 1].
Also, a1 +a2(1−ρ)+ · · ·+an(1−ρ)n is strictly decreasing function for ρ ∈ [1/2, 1].

Proof of Proposition 8. Fix a seed node i. Then, a profit can be written as π(i, ρ) =
ρ(a1(1− ρ) + · · ·+ aD(1− ρ)D) ≤ ρ(1− ρ)

∑D
i=1 ai = ρ(1− ρ)(Ci − 1).

Now, we already know that Ci(G) ≤ n, with equality if and only if G is a star.
Hence, center i∗ gives the highest profit. So,

π(i∗, ρ, n) = (1− ρ) (n− 1) ρ

∂π

∂ρ
= (n− 1) (1− ρ− ρ) = 0

ρ∗ =
1

2

Hence

π(i∗, ρ∗, n) =
1

4
(n− 1)

Proof of Proposition 9. We prove each item separately.
1. Profit ranking of nodes and optimal seed i ∈ {1, 2, 3, . . .}
Note that as n→∞

π(2, ρ) = ρ

(1− p)︸ ︷︷ ︸
node 1

+
(1− ρ)

2︸ ︷︷ ︸
node 3

+

(
1− ρ

2

)2

︸ ︷︷ ︸
node 4

+ . . .


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and

π(3, ρ) = ρ

(1− ρ)2

2︸ ︷︷ ︸
node 1

+
(1− ρ)

2︸ ︷︷ ︸
node 2

+
(1− ρ)

2︸ ︷︷ ︸
node 4

+

(
1− ρ

2

)2

︸ ︷︷ ︸
node 5

+ . . .


Note that π(2, ρ) > π(3, ρ) for ρ ∈ (0, 1). So, π(3, ρ∗3) < π(2, ρ∗3) ≤ π(2, ρ∗2) where ρ∗i is
the optimal price when ith node is a seed. So, π(2, ρ∗2) > π(3, ρ∗3).

Similarly,

π(4, ρ) = ρ

(1− ρ)3

4︸ ︷︷ ︸
node 1

+
(1− ρ)2

4︸ ︷︷ ︸
node 2

+
(1− ρ)

2︸ ︷︷ ︸
node 3

+
(1− ρ)

2︸ ︷︷ ︸
node 5

+

(
1− ρ

2

)2

︸ ︷︷ ︸
node 6

+ . . .


Hence, π(4, ρ) < π(3, ρ). So, similarly proceeding, we find that π(4, ρ∗4) < π(3, ρ∗3).
Therefore, π(i, ρ∗i ) > π(i+ 1, ρ∗i+1) for each i < n/2.

Finally,

π(1, ρ) = ρ

(1− ρ)

2︸ ︷︷ ︸
node 2

+

(
1− ρ

2

)2

+ . . .︸ ︷︷ ︸
node 3


Hence, π(1, ρ) < π(i, ρ) for each i = 2, · · · , bn/2c. Thus, π(1, ρ∗1) is the smallest possible
profit.

2. Optimal price at the optimal seed
Seeding i∗ ∈ {2, n− 1} and as n→∞

π(i∗, ρ) = ρ · ((1− ρ) +
(1− ρ)

2
+

(
1− ρ

2

)
2 + · · · ) =

2ρ

1 + ρ
− ρ2.

Its derivative is:

−2(ρ3 + 2ρ2 + ρ− 1)

(1 + ρ)2
.

Its real root is:

ρ∗ =
1

6
(−4 +

3
√

4 · 3

√
29− 3

√
93 +

3
√

4 · 3

√
29 + 3

√
93 ≈ .465571

Hence, the optimal profit is ≈ .418588.
3. Optimal price at the leaf seed
For a leaf seed i and a line of length n

π(i, ρ, n) = ρ×

2− 2ρ
(

1−ρ
2

)n+1

1 + ρ
− 1


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As n→∞

π(i, ρ) = ρ×
[

2

1 + ρ
− 1

]
∂π

∂ρ
= −ρ

2 + 2ρ− 1

(ρ+ 1)2
= 0

ρ∗ =

{√
2− 1 > 0

−1−
√

2 < 0

SOC is < 0.
4. Immediate from the expression of π(i, ρ) that is increasing in n.

Proof of Proposition 10. For a generic seed i and a cycle of length n

π(i, ρ, n) = ρ×

2×
1−

(
1−ρ

2

)n
1− 1−ρ

2

− 1


As n→∞

π(i, ρ) = ρ×

[
2

1− 1−ρ
2

− 1

]
∂π

∂ρ
= −2(ρ2 + 2ρ− 1)

(ρ+ 1)2
= 0

ρ∗ =

{√
2− 1 > 0

−1−
√

2 < 0

SOC is < 0. Note that that asymtotically this it the same price at the optimal
price for a leaf seed on an infinite line.

Proof of Proposition 11.

Lemma 3. Fix 0 < ρ < 1 and let

Q(n, ρ) =

∞∑
k=0

ak

where

a0 = 1, a1 =

(
1− 1

n

)
(1− ρ), a2 =

(
1− 1

n

)(
1− 2

n

)
(1− ρ)2, a3 =

(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
(1− ρ)3

etc. Then, Q(n, p)→ 1

ρ
as n→∞.

Proof of Lemma 3. The kth term in the sum is:
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ak =

(
1− 1

n

)
· · · · ·

(
1− k

n

)
(1− ρ)k.

First of all,
ak ≤ 1 · · · · · 1 · (1− ρ)k = (1− ρ)k

.
So,

Q(n, ρ) ≤
∞∑
k=0

ak =
∞∑
k=0

pk =
1

ρ

.
Also,

ak ≥
(

1− k

n

)
(1− ρ)k

Hence,

Q(n, ρ) ≥
k∑
i=0

(
1− k

n

)i
(1− ρ)i.

Now, as n→∞, we get
k∑
i=0

(1− ρ)i for a fixed constant k. Now, Q(n, ρ) ≥
k∑
i=0

(1− ρ)i

for any k. Hence, because Q(n, p) ≤ 1

ρ
, it follows that Q(n, ρ)→ 1

ρ
by the sandwich

theorem as n→∞ .

By stochastic cascade centrality tends to set 1
ρ so there are

1

ρ
− 1

extra adopters i.e. the size of the cascade no longer depends on n, but only on the
price. Hence, as n→∞ the firm’s profit tends to

ρ(
1

ρ
− 1) = 1− ρ

and, since by Lemma 3 ρ is bounded away from 0, profit is maximized when ρ is
arbitarily close to 0.

Proof of Proposition 12. For a generic seed i,

π(i, ρ) = ρ ·
(

1− ρ
r
· r +

(1− ρ)2

r2
· r(r − 1) +

(1− ρ)3

r3
· r(r − 1)2 · · ·

)
= ρ · r

r − 1
·
(

(1− ρ) · r − 1

r
+ (1− ρ)2 · (r − 1)2

r2
+ · · ·

)
= ρ · r

r − 1
·
(

1

1− (1− ρ)(1− 1/r)
− 1

)
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Hence,
∂π

∂p
=
r((r − 1)ρ2 + 2ρ− 1)

((r − 1)ρ+ 1)2
, which which means that ρ∗ =

1

1±
√
r

. Since

ρ∗ ∈ [0, 1], we have that

ρ∗ =
1

1 +
√
r

.

And,

π(i, ρ∗) =
r

(
√
r + 1)2

.

Proofs of Propositions in Section 6

Proof of Proposition 13 . Define 1
χPii

= 1.

φi(G) =
1

n

∑
j∈N

∑
Pji∈Pji

1

χPji


=

1

n

∑
j∈N

∑
Pji∈Pji

1

dk × . . .× di


=

1

n

∑
j∈N

∑
Pji∈Pji

dj
dj × . . .× dk × . . .× di


=

1

n

∑
j∈N

∑
Pji∈Pji

1

di
× dj
dk × . . .× dj


=

1

din

∑
j∈N

∑
Pij∈Pij

dj
χPij


If G is regular then

di = dj = d

hence

φi(G) =
1

dn

∑
j∈N

∑
Pij∈Pij

d

χPij



=
d

dn


∑
j∈N

∑
Pij∈Pij

1

χPij︸ ︷︷ ︸
Ci(G)


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Proof of Proposition 14 . Probability of failure for a center link where there are n nodes
and m edges:

φi(G) =
1

n
+

1

n

[m
m

]
=

2

n

which is independent of m. Hence, the center will want to keep all his edges if δ ≥ c
(otherwise none).

Probability of faiure of a leaf in a star with n− 1 edges

φi(G) =
1

n
+

1

n
+

1

n

[
n− 2

n− 1

]
=

3n− 4

n(n− 1)

Probability of failure of leaves in a star that have just added an edge between them:

φi(G) =
1

n
+

1

n

[
1

2
+

1

4

]
+
n− 3

n

[
1

2(n− 1)
+

1

4(n− 1)

]
+

1

n

[
1

2(n− 1)
+

1

2

]
=

3n− 4

n(n− 1)

Hence, the leaves won’t form an edge only if c < δ. A contradiction.
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 8: Cascade centrality vs. degree centrality

(a) n = 10 (b) n = 20 (c) n = 50

Figure 9: Cascade centrality vs. Katz centrality

Appendix B: Simulations

We considered connected networks of size n = 10, 20, 50. We uniformly randomly se-
lected a number of edges n − 1 ≤ m ≤

(
n
2

)
for each graph size and then randomly

selected a network with m edges with a nonsingular adjacency matrix. We then ran-
domly selected one node from this network. We repeated this 1000 times. For Katz
centrality, we fixed α to be half of the largest eigenvalue of the adjacency matrix. k-
order approximation means we apply Theorem 1 only to paths of length k. In networks
of size 10, cascade centrality is computed exactly; in networks of size 20, it is computed
up to paths of length 5; in networks of size 50, it is computed up to paths of length 4.
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 10: Cascade centrality vs. eigenvector centrality

(a) n = 10 (b) n = 20 (c) n = 50

Figure 11: Cascade centrality vs. 1st order approximation

(a) n = 10 (b) n = 20 (c) n = 50

Figure 12: Cascade centrality vs. 2nd order approximation
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 13: Cascade centrality vs. 3rd order approximation
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Appendix C: Macroscopic comparative statics

Figure 14 illustrates that increased clustering that either increase or decrease average
cascade centrality across all nodes (and therefore the cascade centrality of at least one
node).

Higher clustering ⇒ lower cascade centrality. Graphs A and B have 4 nodes and
4 edges. The global clustering coefficient in A is 0 and in B is 0.6. Average cascade
centrality across all nodes is 2.75 in A and 22

3 in B.
Higher clustering ⇒ higher cascade centrality. Graphs C and D have 5 nodes and

5 edges. The global clustering coefficient in C is 3
8 and in D is 3

7 . Average cascade
centrality across all nodes is 2.75 in C and 27

9 in D.
Higher clustering ⇒ higher cascade centrality for a node of a fixed degree. Graphs

E and F have 5 nodes and 5 edges. The global clustering coefficient in E is 3
7 and in

F is 1
2 . The cascade centrality of node i is 18

9 in E and 111
12 in F .
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A B 

C D 

E F 

i i

Figure 14: Clustering and cascade centrality
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